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Abstract

In the COVID-19 crisis, compartmental models have been largely used to predict the
macroscopic dynamics of infections and deaths and to assess different non-pharmaceutical
interventions aimed to contain themicroscopic dynamics of person-to-person contagions.
Evidence shows that the predictions of these models are affected by high levels of uncer-
tainty. However, the link between predictions and interventions is rarely questioned and
a critical scrutiny of the dependency of interventions on model assumptions is missing
in public debate. In this article, I have examined the building blocks of compartmental
epidemic models so influential in the current crisis. A close look suggests that these
models can only lead to one type of intervention, i.e., interventions that indifferently
concern large subsets of the population or even the overall population. This is because
they look at virus diffusion without modelling the topology of social interactions.
Therefore, they cannot assess any targeted interventions that could surgically isolate
specific individuals and/or cutting particular person-to-person transmission paths. If
complex social networks are seriously considered, more sophisticated interventions can
be explored that apply to specific categories or sets of individuals with expected collective
benefits. In the last section of the article, I sketch a research agenda to promote a new
generation of network-driven epidemic models.
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1 Introduction1

OnMarch 17, 2020, theNew York Times published an article promising to explain what lied
Behind the virus report that jarred the U.S. and the U.K. to action; on March 25, 2020, Science
published a detailed piece onMathematics of life and death: How diseasemodels shape national
shutdowns and other pandemic policies; finally, onApril 3, 2020,Nature followedwith a special
report titled The simulations driving the world’s response to COVID-19: How epidemiologists
rushed to model the coronavirus pandemic. These articles succeeded in showing, to a large audi-
ence, how public authorities’ decisions on strategies to contain COVID-19 epidemic has tem-
porally strictly followed themoment whenmathematical epidemiologists reported to them on
simulations’ results of various non-pharmaceutical interventions (given hospitals’ care capac-
ity) on COVID-19 spread. These articles, however, are less useful to think critically about the
mathematical models they pedagogically describe. Although journalists and scientific writers
explicitly stress that the models’ numerical predictions may be unreliable, in particular due to
the poor quality of data needed for models’ calibration, the link between prediction and inter-
vention established bymodellers is never explicitly questioned. In particular, there is no critical
reflection on the kind of interventions that scientists can imagine given their models’ substan-
tive assumptions. In addition of being a device to compute, a model is a tool to think. Thus,
the way a model is designed is also probably shaping the way we think about the means to in-
tervene in the social world (provided that we consider the model as a legitimate guide for this
purpose).

As suggested by Edmonds et al. (2019) in connection with computational models, mod-
ellers themselves are often not explicit enough on what purpose their model was designed for.
This is problematic, the authors argue, because simplifications that may be acceptable for one
purpose, say prediction (i.e., according to the authors, the task of reliable anticipation of nu-
merical unknown quantities), may not be equally inconsequential for another purpose, say
explanation (i.e., according to the authors, the task of defining specific chains of events linking
initial conditions to a final outcome). This led Edmonds et al. (2019, line 10.2) to argue that
using the same model for different purposes has critical implications, and to suggest that it is
better to design, perhaps related, but separatedmodels for pursuing different goals. Within the
context of the COVID-19 crisis, Squazzoni et al.’s (2020) has recently re-considered Edmonds
et al.’s typology of computational models’ purposes and discussed the link between prediction
and intervention in a crisis context (see, in particular, the appendix, and Table 1). In partic-
ular, they suggest that models’ predictions may be used to “compare intervention scenarios
(including the consequences of doing nothing) (…);” in this sense, prediction “could make a
valuable contribution to discussion over interventions.” They caution however against several
risks of building interventions over predictions like “over-reliance on the model as an ‘oracle’,”
“inappropriate political exposure of developers,” “inability of an effectiveness-focusedmodel to
forecast policy utility” or still poor “quality of data to calibrate important model parameters.”

In this article, I propose to develop further Squazzoni et al.’s remarks (2020) on the rela-
tionship between prediction and intervention by focusing on the specific class ofmathematical
models that are driving policy interventions in the COVID-19 crisis context, i.e., compartmen-
tal models (also called SIR models). For reasons that I will explain below, one may accept that
these models can be fruitfully employed to predict several aspects of the virus diffusion at the

1. The present text develops a short public-style piece that I published in French in Le Monde on April 14, as
well as a longer, more academic-oriented essay appeared on April 21 on the French debate website La Vie des
Idées (https://laviedesidees.fr/Les-reseaux-sociaux-dans-la-lutte-contre-le-Covid-19.html).
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macroscopic scale, such as the number of infections, the number of cases requiring critical
hospital assistance or the number of deaths. However, I will claim that these models should
be regarded as problematic with respect to intervention. In particular, I will argue that their
specific content can only lead to one type of intervention, i.e., interventions that indifferently
concern large subsets of the population or even the overall population. These models cannot
help targeting interventions aimed at surgically isolate specific individuals and actor-to-actor
particular diffusion paths. The reason is simple: the variants of SIRmodels used in the current
crisis context address virus diffusion without modelling the topology of social interactions re-
alistically. As we will see, SIR models including explicit representations of network topologies
have been advocated as a necessary improvement of classical compartmental models at least
since early 2000 (see, for instance, Keeling & Eames, 2005). However, SIR models’ variants
supporting policy decision-making in the current crisis continue to ignore this stream of the lit-
erature; the consequences of not properly considering social networks for intervention are not
systematically discussed. My main argument is that this is regrettable, and the debate should
be re-oriented toward network-based SIRmodels as well as toward how appropriate empirical
network data to nourish these models can be collected at a very large scale.

To defend my argument, I will first shortly describe the way mathematical models progres-
sively led French authorities to opt for a generalized lockdown. I will then describe the specific
models that were so influential on political decisions in France. Then, I will develop the real
point of this article: I will explain how social interactions are (mis)represented in these models
and the implications of this in terms of intervention design. Finally, I will propose a research
agenda for a new generation of epidemic models, which will be ideally better equipped for the
next pandemics wewill have to face. Reasonably, the fact that I will focus on a specific national
case does not limit the scope of my analysis. As shown by Science’s andNature’s review articles
mentioned above, French experts indeed relied on the same type ofmodels as their counterparts
in US and other European countries.

2 Models and COVID-19 FrenchMeasures: FromMarch 11 to April 13, 2020

The first three positive cases of COVID-19 in France have been found in January 24, 2020.
They were Chinese citizens, all with relevant connections to the Hubei province. During the
followingweeks, French authoritieswere convinced that the viruswas not present in the French
national territory. The two first cases concerning French nationals were probably found on
February 12 and 13 in two villages close to the small city of Creil, about 70 kilometres North-
East to Paris, where an important French military basis is located. On January 31, 2020, a
French military aircraft repatriated 193 French citizens landed from Wuhan. However, the
linkbetween this event and the two contaminations inmid-February is still controversial (seeLe
Monde, April 10, pp. 20–21). From February 17 to 21, a public gathering of about two thou-
sand evangelists coming from many locations in the country took place in Mulhouse, about
500 kilometres South-East of Paris, close to German and Swiss borders. The official counting
of COVID-19 cases by the French Health Agency started from February 25, when 13 cases
were officially recorded. At that time, quarantine for infected persons and partial movement
restrictions were recommended only at the local level in the two abovementioned areas where
the virus diffusion was reasonably taking place. On February 26, the UEFAChampion League
match between Olympic Lyon and Juventus Turin took place as expected in Lyon, about 500
kilometres straight South to Paris.
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OnMarch 11, 2281 confirmed cases of COVID-19 were officially recorded in France. The
same day, at the invitation of French President, theMinister of Solidarity andHealth formed a
scientific committee, bringing together several specialists (i.e., three infectious disease experts,
one virologist, one intensive care specialist, one immunologist, two epidemiologists, one
anthropologist, one sociologist and one city doctor). According to the formula adopted by the
press release (https://solidarites-sante.gouv.fr/IMG/pdf/200311-_conseil_scientifique.pdf),
this committee aimed “to enlighten public decisions in the handling of Coronavirus-related
health situation.” This was a turning point. Following the scientific committee’s policy
recommendations, a control strategy was initially organized at the national level, including
massive and generalized measures restricting individuals’ freedom of movement.

OnMarch 12, 2020, the freshly nominated scientific committee released its first judgement
(“avis”).2 Among several other elements (following the Italian situation), the judgement ex-
plicitly referred to “mathematical models” simulating the evolution of the epidemic with (or
without) interventions aiming at drastically reducing social interactions (see p. 2). As we will
see later, the committee was especially considering predictions produced by Neil Ferguson’s
team at the Imperial College London. Among these interventions, the French scientific com-
mittee advised “home quarantine for infected persons and all their intra-household contacts,”
“home confinement of persons above 70 and all health-fragile persons,” “reduction of public
transportations,” “closure” of school system at any level, “homeworking,” and the “reduction
of all non-essential social and leisure activities” (see p. 5). At 8pm of the same day, in his first
Covid-19-related public discourse to the nation, the French President announced the closure
of the school system (from Monday, March 16) and firmly invited all French citizens to limit
to the minimum any movement outside home.

On March 14, 2020, the scientific committee released a second judgment, explicitly men-
tioning “knownmathematical models” (see p. 1). This judgment recommended to implement
more severe “restrictions to the social life,” in particular the closure of “all leisure places, in-
cluding restaurants, pubs, cafés,” “shops, except food- and health-related ones,” “gym clubs,”
“swimming pools,” “museums,” “theatres,” “cinemas,” and “nightclubs,” as well as the suspen-
sion of all “church services.” At 8pm of the same day, the PrimeMinister publicly announced
that these measures were effective frommidnight.

On March 16, 2020, the scientific committee released a third judgement. It started with
the regret that, despite the measures announced during the previous days, “the behaviour of
a fraction of French population did not sufficiently change.” For this reason, the commit-
tee recommended to increase even more the restrictions to individuals’ freedom of movement,
namely through “the implementation of a strict generalized confinement following the Italian
model, at the scale of the country for the entire population, with the possibility to implement
even more severe measures within the areas where the virus spread is the strongest” (see point
1, p. 2). Mathematical models again supported the conclusions: “a reduction of at least 60% of
social interactions is necessary to contain the epidemic dynamic as shown by some modelling
studies” (ibidem). At 8 pm of the same day, in his second Covid-19-related public discourse
to the nation, the French President announced the generalized home confinements at the na-
tional level and the associated systems of sanctions for lack of compliance (fromMarch 18, at
noon). These measures were planned to last in two weeks.

On March 23, 2020, the scientific committee released a fourth judgement including two
interesting novelties. On the one hand, it was firmly stated that the generalized home confine-

2. All reports can be freely downloaded by date at: https://solidarites-sante.gouv.fr/actualites/presse/dossiers-
de-presse/article/covid-19-conseil-scientifique-covid-19.
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ment should last for “reasonably six weeks at least;” on the other hand, the committee asked
for further restrictions of individuals’ freedom of spatial movements. This fourth judgement
did not explicitly refer to any mathematical models. It is however important to note that the
mathematical models to which the scientific committee was referring in its first judgement (i.e.,
those studied by Neil Ferguson and his team) were simulated under the hypothesis that the
generalized home confinement was in place for “5months or longer” (see Ferguson et al., 2020,
p. 4). Again at 8pm of the same day, the Prime Minister publicly announced more restric-
tive conditions under which exceptions to leave one’s home were tolerated; four days later, on
March 27, 2020, he extended the home generalized confinement (under the new more severe
conditions) until April 15. In its sixth judgement, released onApril 2, the scientific committee,
although initiating a reflection onwhat criteria should be adopted to decide whether a progres-
sive relax of some freedom restrictions was possible, clearly restated that, for the moment, “the
priority still is the continuation of a reinforced confinement on the long term” (see p. 7).3 Dur-
ing his third Covid-19-related public discourse to the nation onApril 13, the French President
announced that this in fact was the case at least until May 11, 2020!

Thus, given the way political decisions followed the scientific committee’s judgements,
although the scientific committee explicitly cautioned that mathematical models “should be
taken as only one element informing decision-makers” (judgment of March 12, p. 2), the hy-
pothesis that these models worked as a compass for the French authorities is plausible. Prag-
matically, in the short run, this made totally sense. Although rare, post-hoc assessment of the
quality of the macroscopic predictions of this type of models suggests that these predictions
are reliable as long as relatively short periods of time, say, one to two weeks, are considered (see,
for instance, Camacho et al., 2019). The French scientific committee cannot be blamed for not
taking these predictions with prudence. They indeed based their recommendations on “inter-
mediary hypotheses that were sufficient tomake visible a highly plausible and strongmismatch
between the number of cases needing intensive care assistance and French hospitals’ capacities,
even when these capacities were reinforced with appropriate reorganization strategies” (judg-
ment ofMarch 12, p. 2). What should be thus critically scrutinized is not the predictive utility
of themathematical models at hand. Under the pressure of the emergency situation, modellers
provided policy-makers with rough but precious information on themacroscopic epidemic dy-
namics. In such a crisis context, it seems rational to value more the order of magnitude than
the precision of point-estimates.

However, can these models be used to go beyond predictions? More precisely: are they
equally useful to provide recipes for intervening on the microscopic dynamics of contagions
in order to stop it? Presently, this seems to me the crucial question. One should indeed re-
mark that the same type ofmathematical models, which guided policy-makers in the fire of the
epidemics, now also shape thinking about exit strategies from the generalized lockdown (for
France, see Di Domenico et al., 2020; for other countries, see, for instance, Kissler et al., 2020).
This is the real issue. Can these models help us to design interventions that are targeted at in-
dividuals (or small subsets of them) and person-to-person diffusion paths, which may play a
special role in the virus spread? Or, in contrast, do these models increase the probability that
scientists and policy-makers can only think in terms of generalized interventions concerning
large and undifferentiated groups of people? To answer this question, we need to look into the
building blocks of these models that are (partly) determining our everyday life.

3. The scientific committee delivered a fifth judgement onMarch30 that I donot consider here because itmainly
concerns the specific, especially dramatic, situation of French retirement homes.
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3 Ferguson’sMicroscopic Simulations and SIRModels in Epidemiology

The text of the first judgment—releasedby the French scientific committee onMarch12, 2020
(see, in particular, p. 2) — suggests that French experts illustrated their policy recommenda-
tions to French authorities through the simulated scenarios of the number of infections, severe
cases, and deaths, without and with more or less drastic non-pharmaceutical interventions, re-
alized by the Britishmathematical epidemiologist Neil Ferguson, the head of theMRCCentre
for Global Infectious Disease Analysis at the Imperial College London. Ferguson and his team
started to deliver COVID-19 reports on January 17, 2020: at the moment of writing, fourteen
reports have been published. Although the 12-March-judgement of the French scientific com-
mittee did not explicitly refer to Ferguson’s recent papers (the mention “personal communica-
tion” only appeared in the text), it is reasonable to think that the “specific COVID-19 model”
to which the committee referred in the text was the model finally published (on March 16) in
Ferguson et al. (2020) report n° 9.4 As shown by the articles in The New York Times, Science
andNaturementioned in the introduction, this report had a worldwide coverage and impact.
Thus, to explain why Ferguson’s simulations were adopted by French experts, the fact that one
member of the French scientific committee was an internationally well-recognized mathemat-
ical epidemiologist, who regularly co-authored paper with Neil Ferguson since early 2000, is
probably only an additional element.

At this point, a more precise analysis of the content of the model that Ferguson and his
team employed to predict the diffusion of COVID-19 in UK and US, is necessary. In Fergu-
son et al. (2020, see in particular pp. 4–5), the model was presented as an “individual-based
simulation model;” it was said that this model relied on a previous model that was designed to
study the diffusion ofH5NI in South Asia and the influenza in UK and US (the two articles
describing the results of this original model were published in Nature on September 8, 2005
and July 27, 2006, respectively). As the authors honestly acknowledged, “the basic structure of
the model remains as previously published.” Thus, the French scientific committee regarded
a model’s structure designed at least 15 years ago for a different virus “as still being a reference
for pandemic intervention” (see judgment fromMarch 12, 2020, p. 2).

Inmore detail, Ferguson et al.’s model (2020, pp. 4–5) represents several millions of virtual
individuals whose age and family size distributions follow empirically observation in the UK
and US. Each virtual individual has a geographical location and is assigned to a school and/or
a workplace, whose (spatial) distributions are also empirically calibrated to follow actual dis-
tributions. Within this virtual but realistic social environment, each artificial individual can
probabilistically be in one of these three different states: “susceptible,” “infective,” and “recov-
ered” (in this case, supposedly “immunized” at least on the short run). The heart of the model
is the transmission mechanism of the virus from an infected virtual agent to a susceptible one.
Thismechanism combines three elements: 1. the number of days duringwhich the infected in-
dividual is really contagious; 2. the probability the infected individual can effectively transmit
the virus in an interaction with a susceptible individual (this probability being in turn set dif-
ferently for infective-asymptomatic and infective-symptomatic individuals); 3. the number of
social contacts of the infected individual. The simulation of the epidemic at the macroscopic
level can then be performed by setting the value of a number of parameters (in addition to
1–3), among which are the precise timing of infected individuals’ infectiousness (which again
differs for infective-asymptomatic and infective-symptomatic individuals), the threshold for

4. All reports of Ferguson’s team can be freely downloaded at https://www.imperial.ac.uk/mrc-global-
infectious-disease-analysis/covid-19/covid-19-reports/.
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being considered a severe case requiring hospitalization, the length of hospitalization, and the
probability of dying (as a function of the individual’s age).

Thus, although Ferguson and his teamqualified theirmodel as a “stochastic, spatially struc-
tured individual-based simulation,” to go back to the label adopted inNature article in 2006,
the simulations upon which the impact of non-pharmaceutical interventions on COVID-19
in the UK and US was tested was a clear example of the compartmental models dominating
the approach of biologists and epidemiologists working on the diffusion of infectious diseases
(for an introduction, see for instance, Keeling & Rohani, 2008). In their generic form, these
models essentially study the temporal evolution of the fraction of individuals belonging to a
pre-defined number of groups (or types), given a certain probability of state changing per unit
time. As their most frequent variants postulate the existence of at least three groups, namely
“Susceptible,” “Infective” and “Recovered” individuals, these models are also known as SIR
models (the label that, for simplicity, I will adopt hereafter).

The particularity of Ferguson et al.’s model (2020) is that they implemented the virus trans-
missionmechanism at the actor-level, thus providing amicro-simulated version of a SIRmodel.
These models are in fact usually specified at the group-scale and only describe the evolution of
the size of each group at the aggregate level through various forms of differential equations.
This may indeed partly explain the reason of the success of classical SIRmodels (I will point to
a secondpossible factor related to empirical data in the last section). They are (relatively) simple
and can be studied (often analytically) through a powerful and widely theorized mathematical
formalism. This a well-known mechanism of formal models’ success. Unrealistic models can
durably dominate a given research domain because they are supported by a practicalmathemat-
ical technique: for example, think of macroeconomic general equilibriummodels based on un-
realistic microscopic assumptions, such as utility maximization and representative agents, but
supported by powerful calculus techniques (see on this point Kirman, 1992).

Ferguson and his team confirmed themselves the close relationship between their “stochas-
tic, spatially structured individual-based simulation” and meta-population SIRmodels, when,
in the report n° 12, published onMarch 23, 2020 (seeWalker et al., 2020), they considered the
aggregate level to extend to 200 other countries their counterfactual analysis of the diffusion
of COVID-19, with and without non-pharmaceutical interventions. In this case, as they did
not have access to data as rich as those they could exploit for the case of the US and UK, they
returned tomore classical SIR (and SEIR)models, which confirmed the order ofmagnitude of
the predictions initially generated through the individual-based simulations when applied to
the US and the UK. The fact that microscopic implementations of SIR models require richer
data is well known. When these data exist, the added value of individual-based SIR models
is that they can lead to more precise predictions at smaller spatial scales (like cities or regions)
and for smaller subgroups of the population (for this kind of cross-model comparisons, see, for
instance, Ajelli et al., 2010).

However, after all, why are SIRmodels so appealing? The reason seems to be their promise
to deliver, and monitor, a fundamental epidemiological quantity, i.e., the basic reproduction
rate (noted R0), which amounts to the average number of individuals that an infected indi-
vidual can contaminate for as long as s/he is contagious. This is a crucial parameter because,
according to standard SIR-model theory, the value of R0 gives us the critical threshold of a dif-
fusion process, i.e., the tipping point beyondwhich the virus spread is supposed to slow down,
and, eventually, stop. I will come back to this in the next section. What matters now is that
this rate in fact arises from three components that Ferguson’s individual-based simulation al-
lows to distinguish at the microscopic level. These are: the period of time during which an
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infected individual is contagious, the probability s/he effectively transmits the virus during a
given social interaction, and her/his number of social contacts. Obviously, the last factor plays
a crucial role within the model’s dynamic: the action of the first two factors in fact unfolds
again and again at each dyadic interaction. But how do dominant SIR models represent such
interactions? This is the crucial point that must be understood to assess what kind of policy
interventions these models can in fact deliver to slow down the macroscopic dynamics of con-
taminations and deaths.

4 Social Interactions in Dominant SIRModels

Within Ferguson et al.’s (2020) individual-based simulations of COVID-19 diffusion in UK
andUS, each virtual individual has social contacts within the household, at school, in thework-
place aswell as in thewider community. The latter are assumed to happen “randomly” (ibidem,
p. 4), even though their probability decreases with the geographical distance between individ-
uals. Moreover, for all virtual individuals assigned to a school, contacts are assumed to be two
times more numerous than elsewhere. At the population-level— the authors claimed— such
a parameterization leads to a contact matrix where one third of social contacts occur within
the household, another third at school and in workplaces, and the remaining third unfolds in
the wider community. Within the aggregate SIRmodels subsequently developed by Ferguson
and his team to extend the analysis to 200 new countries, the focus is on one specific feature of
social contacts: their age-group structure (see Walker et al., 2020, figure 2d-f, p. 5).

A small detail should be remarked at this point. Although social distancing interventions
are usually represented as generically aiming at the reduction of the reproduction rate R0
(i.e. the average number of individuals that an infected individual can contaminate as long as
s/he is contagious), these interventions in fact only touch upon one specific component of R0,
i.e., the per-individual number of social contacts. If we carefully read Ferguson team’s reports,
it is evident that policy scenarios are formulated precisely in terms of the overall proportion
of social contacts that this or that intervention is assumed temporally to inactivate (see, for
instance, Ferguson et al., 2020, table 2; Walker et al., 2020, pp. 6–7). To some extent, this
is surprising. One may in fact imagine also to manipulate another component of R0, i.e.,
the probability of virus transmission within a given social interaction. This may be used, for
instance, to represent systematic variation in individuals’ propensity to respect (worldwide
recommended) social-interaction-related basic protective measures (such as sneezing in the
elbow or keep appropriate spatial distances). However, this is usually not considered. As it is
overtly admitted, adaptive individuals’ behaviours are not represented within the model (see,
for instance, Ferguson et al., 2020, p. 3, p. 6, p. 15; Walker et al., 2020, p. 3; Flaxman et al.,
2020, p. 1). Differential-equation-based SIR models are not very flexible in this respect. I will
come back to this point in the last section.

Let us then move on to the crucial question. Which assumptions are we implicitly making
when social distancing interventions are conceived as a generic reduction of, say, 75% of all
social contacts outside household, which corresponds to the scenario of a population-wide
social distancing simulated by Ferguson and his team (see, for instance, Ferguson et al., 2020,
table 1)? I will discuss two of these assumptions, which to me seem to shape most profoundly
the type of interventions designed by these models.

First, when SIR models, similarly to those built by Ferguson and his team in early March,
simulate a temporal reduction of physical social interactions by a given factor, these models
imply that all actors are equally important in terms of social connectivity. This ignores one of
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the most important empirical findings of research on complex social networks during the last
twenty years or so: social networks are highly heterogeneous in terms of degree distributions.
This means that while a few actors are able to establish and sustain tens of social interactions,
the vast majority of them only have a small amount of social contacts (Newman, 2003, line
3.3). Barabasi (2014, ch. 5), who largely contributed to understand this phenomenon, calls
these special actors “connectors” or “hubs.” As we have seen, some SIR models take into ac-
countpossible age-groupvariations in social contacts: this clearly is an important improvement.
However, given the usual size of these subgroups, actor-level heterogeneity in social connectiv-
ity is likely to persist. For example, consider sexual contacts. At a given age, and for a given
sex, a few individuals continue to have tens of partners (over a period of one year, for instance),
whereas the vast majority of individuals only have one, or a few, sexual relationships (see, for
instance, Liljeros et al., 2001).

Secondly, in addition to ignoring hubs, interventions that are conceived as generically
temporally inactivating a given proportion of physical social contacts, implicitly assume
that, given the allowed average number of contacts per person, interactions within a given
subgroup and/or social space occur at random. As these interactions are regarded as having
the same value, they can be imagined as suddenly disappearing at once. This also ignores a
crucial feature of social networks: not all interactions have the same probability of occurring.
Contrary to what was initially postulated by random models of network formation, where
ties were supposed to form independently with a fixed probability (see, for an overview,
Newman, 2003, pp. 96–106), we now know that tie formation in empirical networks follows
well-defined path dependencies. Social interactions do not follow random paths: they have
a structure and are deeply constrained. Dominant SIR models continue to ignore these
regularities both at the local and the global level. Let me briefly discuss these two scales in turn.

Social interactions have a structure at the level of each actor (i.e. ego-centered networks).
Let us consider just one example: if two actors have a common contact, then it is more likely
that they also establish a contact compared to the probability of this happening had the three
ties formed at random. As already suggested by Granovetter’s classic paper on weak ties (1973,
p. 1362), this pressure toward triadic closure is deeply related to another property of social
interactions, i.e., homophily— the tendency of contacts between similar actors to bemore fre-
quent than random. And we now know that homophily, and the associated pressure toward
triadic closure, can accelerate the creation of contagion clusters (Jackson and Lopez-Pintado
2013). Indeed, if A and B share an infected contact C, they aremore likely to contaminate each
other too than if they donot have a common infected friend. This property of ego-centerednet-
works may be exploited to identify local paths of contaminations that are more likely than oth-
ers. Although it would be possible to design SIR-like models incorporating these ego-centered
network phenomena (see, Block et al., 2020) and so eventually considering that social interac-
tions are locally structured, this is simply impossible with the type of models that are used in
the current crisis context. This limits the type of interventions that can be explored.

However, the structuration of social interactions is not limited to the actor-level. The com-
bination of a myriad of ego-centered networks produces a higher-order structure that also ex-
hibits well-defined properties. In particular, research on “small-world” topologies has shown
that small sets of highly connected nodes can be related by long-range ties, increasing the proba-
bility that two actors belonging to two distant social circles get in contact, compared to a social
world where actors where only locally paired. It was shown that these bridges precisely cor-
respond to the interactions that can rapidly increase disease spread in a population (Watts &
Strogatz, 1998). This property could be exploited to identify transmission paths that make
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distant contagion clusters communicate: interrupting them probably leads to slow down the
diffusion process. Again, although it would be possible to design compartment models incor-
porating this phenomenon (see, Brethouwer et al., 2020), the variant of SIR model currently
dominating the policy decision-making process cannot help reasoning along these lines, be-
cause they do not pay attention to the global structure of social interactions.

The important point now is that there is a deep relationship between the high heterogene-
ity of actor degrees (i.e. their number of links), the high clustering of ego-centered networks
and the high reachability of the global network resulting from the combination of such local
circles. Indeed, hubs act as the social glue of social networks. Roughly, small hubs create links
within and across relatively close local circles; medium hubs create connections between sets of
local circles tied together by small hubs; and large hubs (i.e. the very rare nodes with an excep-
tionally high number of connections) keep the entire set of small and medium communities
in communication. This explains why, when considered as a whole, social networks qualita-
tively resemble a tree-like structure (Barabasi & Bonabeau, 2003), where basic units are more
or less internally densely connected communities (Lancichinetti et al., 2010). The typical sta-
tistical signature of this hierarchicallymodular structure is the inverse relationship between the
node’s degree and its clustering coefficient: the more links a hub has, the less of the hub’s con-
tacts are also connected. This suggests that the larger the hub, the larger its capacity to span
over otherwise disconnected local circles (see Barabasi, 2014, pp. 232–237). The presence of
large, medium and small hubs (i.e., network hierarchy) tying together more or less densely con-
nected local communities (i.e., network modularity) has a crucial consequence: real-world (so-
cial) networks are resistant to perturbations concerning lots of low-degree-nodes whereas they
are exposed to cascades of negative effects when hubs are attacked (see Barabasi, 2014, ch. 9).
Hubs are the “Achilles’ heel” of complex social networks.

Thus, if one had to draw only one implication from the observation that social interactions
are not random but deeply structured, both locally and globally, this would be the following:
to slow down a virus spread, we must try to identify and neutralize hubs, i.e., the actors with
the highest probability to be involved in the highest number of relevant interactions per unit
time. Hubs play a twofold crucial role in the contagion process: first, if they are not infected
yet, they have the highest chance to become infected because of their larger social exposure; sec-
ond, for the same reason, when they are infected, they can in turn quickly contaminate a larger
number of not-yet-infected individuals. That is why hubs should be the priority of targeted in-
terventions. To cut their ties is likely to generate larger systemic effects compared to what one
may obtain if a large majority of low-degree-actors were isolated (see Barabasi, 2014, ch. 10). If
one reaches and neutralizes the hubs, the networks can be indeed fragmented, thus leaving the
virus vanish within smaller and smaller local contagious circles; actors with few interactions do
not have such a capacity of setting local communities apart. This is a well-known fact for any
scholar empirically studying the diffusion of sexually transmitted diseases in small groups: the
(relatively) few actors having a large number of sexual contacts (what scholars called “concur-
rency” as opposed to possibly “serial monogamy”) play a crucial role in the diffusion process
and must be prioritized in any intervention (see, for instance, Morris & Kretzschmar, 1997;
Rocha, Liljeros, & Holme, 2011; Moody & Benton, 2016). It is also true that there are differ-
ent ways to conceptualize, identify and measure the hubs in network terms. Furthermore, we
must recognise that interventions targeting hubs are likely to be more or less effective accord-
ing to several aspects of the network topology (see, for a systematic analysis of these two points,
Montes et al., 2020). However, my point here is that dominant SIR models continue to think
in terms of average contacts and random interaction and thismakes it impossible in the present
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crisis to understand which specific individuals and diffusion paths we need to test, isolate, pro-
tect and/or treat (depending on the specific features of the hub and on material and practical
changing constraints). Although reasonably constituting a quantitative minority, these cases
are probably keys in accelerating the contagion dynamic at the microscopic level.5

To push the argument further, one may eventually consider that the formal proof of the
crucial importance of taking seriously the structure of social interactions for modelling disease
diffusion is due to certain variants of SIR models itself. Although they still seem a minority,
SIR models integrating network topologies that have been studied by physicists at least since
early 2000 (for a review, see Newman, 2003, pp. 229–233; more recently, see Duan et al., 2015,
pp. 809–815). Results are radical. For instance, let us go back to the reproduction R0, i.e.,
the average number of individuals that infected individuals can contaminate as long as they
are contagious. The principle according to which the value of R0 should go below 1 — the
critical threshold often mentioned also in public debate — in order to stop the COVID-19
epidemics, continue to provide the main compass to assess policy interventions. For example,
when empirically evaluating how the epidemic reacted in eleven countries to various forms of
social distancing, Ferguson’s team stated:

The key aim of these interventions is to reduce the effective reproduction number,
𝑅𝑡, of the infection, a fundamental epidemiological quantity representing the av-
erage number of infections, at time t, per infected case over the course of their infec-
tion. If 𝑅𝑡 is maintained at less than 1, the incidence of new infections decreases,
ultimately resulting in control of the epidemic. If 𝑅𝑡 is greater than 1, then in-
fections will increase (dependent on how much greater than 1 the reproduction
number is) until the epidemic peaks and eventually declines due to acquisition of
herd immunity. (Flaxman et al., 2020, p. 3).

But, under which hypotheses, were the mathematical proofs of classical SIRmodels show-
ing the existence of such critical threshold? Hypotheses are as follows: (a) all infected actors
have more or less the same probability to transmit the virus during each interaction; (b) these
interactions occur randomly within the social space (a condition usually called “homogenous”,
“uniform” or “full” random mix). Analytical and/or numerical studies of SIR models relax-
ing these hypotheses and explicitly including network structures with realistic levels of degree
heterogeneity showed that a value of R0 lower than 1 does not guarantee that the epidemic
stops. On the contrary: when broad degree distributions are present, every virus can spread ir-
respectively of the postulated transmission probability (for a literature review on this point, see
Barrat, Barthélemy, & Vespignani, 2008, ch. 9). The explanation of this result is again related
to the potential action of the hubs. A reproduction rate lower than 1 can well arise from the
co-existence of many actors being involved in very few interactions (thus depressing the overall
value of R0) and a few actors with tens of links. According to the specific underlying structure

5. It should be noted that, in addition to intervention, the disproportionate impact of hubs on the spread of
a disease may also be crucial to explain deep statistical features of epidemics. Cirillo and Taleb (2020) have
recently studied the distribution of deaths from 72major epidemics of human history and found that the dis-
tribution of victims regularly presents extreme fat tails. This led them to claim that “epidemiological models
like the SIR differential equations, should never be used for precautionary risk management, which should
focus on maxima and tail exposures instead.” Although their work is descriptive, they acknowledge that net-
work analysis may help to identify “(…)mechanisms for the spreading of contagion and the existence of super
spreaders, a plausible joint cause of fat tails.” The analysis above helps to see why the relatively few individu-
als with a disproportionate high amount of connections may generate cascades of infections whose aggregate
consequences can go far beyond those expected within a population of “average” individuals.
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of social interactions, it may suffice that one, or a few, of these hubs be infected to have then
the virus leaking through the network (see Barabasi, 2014, p. 135). That is why only knowing
the distribution of social interactions per individual may not be sufficient to predict the exact
unfold of the epidemic: the overall network topology should also be known.6

To sum up: the variants of SIR models that still dominate prediction and intervention in
the current crisis are based on the (correct) hypothesis that the virus spread is fuelled by so-
cial interactions. However, due to the sake of simplicity, modellers do not explicitly represent
the structure of these interactions, either at the local scale (i.e. ego-centered networks) or at the
global scale (the topology of the resulting network). It is as ifwepretended realistically tomodel
car flows at a country level, and potentially associated traffic jams, without also modelling the
networks of streets, routes, and freeways. Could this type of models go beyond recommenda-
tions advising everyone not to use the car or allowing only specific fractions of the population
to take the route at specific times and days? I suspect they could not. One may also anticipate
that many drivers would be highly dissatisfied with such generic and undifferentiated instruc-
tions. SIR models currently in use put each of us in a similar situation. The lack of route
infrastructure withinmy fictive trafficmodel corresponds to the absence of the structure of so-
cial interactionswith dominant SIRmodels. Similarly to the fictive trafficmodel thatwould be
incapable to recommend to users specific paths to make trafficmore fluid and travel at a higher
speed, dominant SIR models do not allow to identify specific actors and diffusion path that
should be neutralized, because of their especially high impact on the speed of the virus spread.
Consequently, currently dominant SIR models limit us to think in terms of generalized in-
terventions while we are not allowed to move, no matter of our relative impact on contagion
dynamics. There is a crucial piece of reality that these models miss to include, and this limits
our policy interventions, leaving us with no real choice.

5 AnAgenda for a NewGeneration of EpidemicModels

There are many reasons why integrating the structure of social interactions within models of
virus diffusion where there is human-to-human transmission is greatly rewarding. This may
help us to think about, design and implement targeted interventions, i.e., interventions that
focus on individuals and dyadic transmission paths that are likely to have the largest systemic
impact on contagion’s speed and penetration rate. This would avoid imposing to large and
undifferentiated sectors of the population huge psychological, relational and economic costs.
With respect to possible exit strategies from lockdown, attempts at adapting SIRmodels to the
logic of targeted interventions are in place. In particular, research is focusing on the importance

6. It is important to note that, conceptually, we are not obliged to think in terms of social network analysis
to pay attention to the disproportionate potential impact of hubs. Epidemiologists admit the possibility of
“super spreaders” either as individuals with a special infectivity or as events where one (or a few) individuals
can generate a high number of secondary infections in a short time. As shown by control strategies discussed
by James, Pitchford and Plank (2007) from this perspective, however, not to consider “superspreading” in
combination with social network analysis again leads to interventions that only target social events and/or
large and undifferentiated fractions of the population. A similar event-based logic would consist in targeting
specific types of places, and among them, specific sub-categories, as a function of how often and/or how
intensely a place is publicly attended. This is what is done, for instance, by Benzell, Collis and Nicolaides
(2020) for a long list of stores and locations in US by exploiting a massive dataset of geolocations from tens of
millions of smartphone devices in. Again, from the network perspective I am endorsing here, this strategy is
forced to assume that all individuals are potentially equivalent as a vector of the disease. As we do not know
the characteristics of the hubs visiting a given location, their specific network position, their geographical
origin when visiting a given place, we can only close entire categories of shops and activities.
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of breaking connections that increase communication between distant social circles seems in
progress.

For instance, Siegenfeld and Bar-Yam (2020) proposed to think in terms of basic reproduc-
tion rate across local communities rather than between individuals. They argued that interven-
tions aiming at the reduction of connections between communities can slowdownCOVID-19
diffusion. In an actor-level analysis, Brethouwer et al. (2020) developed a SEIRmodel to explic-
itly represent a small-world topology; by differentiating actor-to-actor transmission probability
through short- and long-range ties, they suggested that interventions targeting the latter type
of links could help to slow down the virus spread. These studies are tremendously useful to
illustrate the impact that the network topologies can have on the type of alternative policy in-
terventions in epidemic models. Unfortunately, they did not incorporate empirical data on
social interactions on a large scale. As a consequence, targeted interventions can only be illus-
trated in abstract and qualitative terms whereas quantitative precise recommendations cannot
be explored. This is the main problem we have to face for the future. In order to consider net-
works systematically in a new generation of epidemicmodels, we needmuchmore fine-grained
data on social interactions as well as much more massive computational power capacities.

It is probable that these deficiencies could explain why SIR models without realistic net-
works structures are still so dominant. In addition to a powerful, parsimonious, and well-
theorized mathematical formalism (i.e. differential equations), they are less data-demanding.
Indeed, many analysts have raised concern on the limitations of modelling heterogeneous so-
cial behaviour and accurate structures of social interactions in this type of models at least since
the H1N1 pandemic. Epstein (2009), for instance, already formulated a plea for data-driven
algorithmic models, in particular agent-based computational models, and defended the tech-
nical possibility to have this type of models implemented at a global scale (Parker & Epstein,
2011). However, as forcefully pinpointed by Squazzoni et al. (2020), this type of models was
in fact absent from the scientific and public debates on predictions and interventions concern-
ing COVID-19. I suggest that this is primarily due to the absence of fine-gained empirical data
on social networks at the country level, as well as to the technical difficulties related to run
network-data-driven computational models at a sufficient scale.

This said, despite its dramatic effects on the short run, we should take the current crisis as
an opportunity to reconsider the challenge of empirical data and research infrastructures. Sci-
entific andpolitical authorities are nowaware that quantitative social sciences urgently need the
equivalent of particle accelerators in physics or wheatear forecasting facilities in climate and en-
vironment studies. It is natural to consider that in order to advance in the understanding of
themolecular structure of a new virus, we needmassive rich data and tools with huge computa-
tional capabilities. However, it seems unlikely that we are ready to accept the equal importance
of providing comparable long-run economic and institutional efforts to adequately model and
simulate the diffusion of the same virus through human-to-human interactions, which are (at
least) as complex as the infra-virus interactions between molecules and cells. No matter how
unrealistic this idea may seem now, the current crisis clearly urges us to understand that with-
out being able tomodel and simulate heterogeneous human behaviours embedded in complex
(and also evolving) social networks at a country level, we simply cannot intervene on conta-
gion dynamics more surgically than what presently suggested by dominant SIR models (even
in their individual-based variants).

To advance in such direction, a minimal agenda should contain at least four chapters. I
am not speaking here only from a specific French situation. Recent calls for a new “outbreak
science” in the US (see Rivers et al., 2020), for instance, were based on similar diagnoses on
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modelling, data and institutional deficiencies (ibidem, pp. 10–15), and led to similar propos-
als for the future (ibidem, pp. 17–20). I believe that the following suggestions reflect a larger
problem, not only my main French observation window.

1. We should collect various forms of massive digital and mobility data systematically.
These data have the potential to inform network-based model of epidemic spread at a certain
level of resolution. For instance, by exploiting the frequency, the length and the reciprocity of
phone calls, it is possible to infer the existence of strong and weak ties between actors (see, for
instance, Onnela et al., 2007). By exploiting users’ geographical location, phone calls help to
show that the former type of ties is more likely to connect individuals who are geographically
closer (Onnela et al., 2011). However, existing studies comparing network structures inferred
from co-presence data and face-to-face interactions involving verbal exchanges in small
groups, suggest that spatial co-presence may be a poor indicator of some features of real social
networks that are relevant for disease diffusion. For instance, this is the case of actors with a
large number of connections, i.e., hubs (see Génois & Barrat, 2018). In addition, because of
privacy issues under (even more) lively debate in the current crisis context, this type of data
is likely to be released and treated at a higher level of aggregation than the individual level.
Thus, we may expect that digital data can help to identify the broad structure of long-range
ties across more or less geographically closed social circles rather than providing detailed, and
directly exploitable, information on the structure of actors’ local social networks. This is
probably what we should also expect from various forms of mobility data (see, for instance,
Aleta et al., 2017).

2. Given massive digital data’s limitations, despite their potential, this type of empirical
information should not be our only tool tomap social interactions. Especially for virus spread,
person-to-person interactions is what really matters. Equally, if not more, intense efforts thus
should be made in collecting empirical data on off-line social interactions at a country scale.
In this respect, more traditional sampling methods should be reinforced, and adapted, to col-
lect data on ego-centered networks. National statistical offices and various public and private
poll institutes usually collect a huge amount of information on properties and behaviours of
individuals, households and firms. However, at least in France, no comparable effort and pub-
lic investments have been made on data collection concerning network data. This is a serious
problem, in particular now that we start to have statistical methods that could be used to infer
global network structures from samples of ego-centered networks (see Smith, 2012). This type
of information could then be increased by findingways to incorporate novel numerical devices,
such as wearable wireless sensors to trace real duration and temporal evolution of face-to-face
interactions (see Barrat et al., 2014), within more tradition sample design at a country level.
We need to design procedures allowing such coupling at a very large scale (on this point, see
Stopczynski et al., 2014).

3. In addition to reinforce our data collection procedures, we also need to continue to
developmethods to clean and describe complex data structures on social interactions. Amajor
issue here is how to deal with error measurement and omitted observations. This problem
equally concerns novel numerical devices for high-granularity face-to-face interactions (Génois
et al., 2015) andmore traditional sampling approach for ego-centerednetworks (Smith,Moody,
& Morgan, 2017). Considerable progresses have been made in both fields (see, respectively,
Sapienza et al., 2018; Heckathorn&Cameron, 2017), but this clearly is amajor line of research
that should be pursued and reinforced even further.

4. Once properly collected, cleaned and described, fine-grained data on social interactions
must then be introduced within methods that allow us to simulate the macroscopic dynamic
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of the epidemic when the virus is transmitted through person-to-person interactions among
individuals with heterogeneous adaptive behaviours. The judgements delivered by the French
COVID-19 scientific committee as well as scenario analyses by Ferguson and his team repeat-
edly remarked that the systemic effect of the proposed interventions crucially depend on the
way individuals respond to them. However, no model advising these interventions explicitly
include actors’ possible behavioural responses. Thus, we face a paradox here: we have our lives
determined by interventions that are based on models ignoring at the same time the real struc-
ture of social interactions and the complexity of human behaviours when uncertainty and risks
are both present. The same technique (i.e., agent-based computational models) that can incor-
porate empirical data on complex network structures can also easily integrate large scale survey
and/or experimental data on the heuristics that actors develop under situations of uncertainty,
risk or fear (for an interesting example on this actor-related part, see Badham&Gilbert, 2015).
However, one of the main challenges is to develop technical infrastructures to make it possible
to run simulations combining simultaneously real complex networks and actors’ behaviours at
a large scale. For instance, we can consider the micro-simulation platform described by Grefen-
stette et al. (2013) and imagine what the inclusion of network topologies and heterogeneous
adaptive behaviours would require in computational terms.

Needless to say, a similar agenda requires pro-active scientific policies and extensive public
investments. However, the costs of the current crisis will give politicians no excuse for ignoring
these challenges and the opinion of experts better prepared to face the next pandemic. It is now
clear that the extent to which interventions on a virus spread can be targeted rather than gen-
eralized, directly depends on the granularity of data on social interactions and computational
power of the required modelling tools. Obviously, making part of our relational life accessible
to data and research could be costly. Nevertheless, the choice for the future is now clear. If
we do not accept such a relatively small privacy reduction, each of us will be exposed to much
larger and painful freedom restrictions.
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