Sociology’s Stake in Data Science


  • Philipp Brandt Department of Sociology and Center for the Sociology of Organisations, Sciences Po, Paris



data science, Dewey, computational social science, digital transformation, reflexivity


Data scientists gave sociologists pause when they started disturbing social life and research. This article considers three instances where data science made inroads into the sociology jurisdiction. Instead of calling for a defense, they reveal opportunities for sociological research in the digital age. These opportunities build on the data-analytic thinking that undergirds the discipline's more salient structures and conventions. They recall old sociological intuitions and pragmatist theory that conceptualize the research process in a way that leaves room for novel observations. From this perspective, data science can help integrate sociology around new problems and shared principles and enlarge it by introducing its ideas to different audiences.


Abbott, A. (1988). The System of Professions: An Essay on the Division of Expert Labor. Chicago, IL: University of Chicago Press.

Abbott, A. (1998). The Causal Devolution. Sociological Methods & Research, 27(2), 148–181.

Abbott, A. (2001). Chaos of Disciplines. Chicago, IL: University of Chicago Press.

Abbott, A. (2004). Methods of Discovery Heuristics for the Social Sciences. Manhattan, NY: WW Norton & Company.

Auspurg, K., & Brüderl, J. (2021). Has the Credibility of the Social Sciences been Credibly Destroyed? Reanalyzing the “Many Analysts, One Data Set” Project. Socius, 7, 1–14.

Avnoon, N. (2021). Data Scientists’ Identity Work: Omnivorous Symbolic Boundaries in Skills Acquisition. Work, Employment and Society, 35(2), 332–349.

Bail, C. (2021). Breaking the Social Media Prism: How to Make Our Platforms Less Polarizing. Princeton, NJ: Princeton University Press.

Baćak, V., & Kennedy, E.H. (2019). Principled machine learning using the super learner: An application to predicting prison violence. Sociological Methods & Research, 48(3), 698–721.

Barabási, A-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509–512.

Barbosa, N.M., Sun, E., Antin, J., & Parigi, P. (2020, April). Designing for Trust: A Behavioral Framework for Sharing Economy Platforms. In Y. Huang, I. King, T-Y Liu, & M van Steen (Eds.), Proceedings of The Web Conference 2020 (pp. 2133–2143). New York, NY: ACM.

Battle-Baptiste, W., & Rusert, B. (Eds.). (2018). WEB Du Bois's Data Portraits: Visualizing Black America. San Francisco, CA: Chronicle Books.

Ben-David, J. (1971). The Scientist's Role in Society: A Comparative Study. Hoboken, NJ: Prentice-Hall.

Black, T. R. (1999). Doing Quantitative Research in the Social Sciences: An Integrated Approach to Research Design, Measurement and Statistics. London: Sage.

Bol, T., de Vaan, M., & van de Rijt, A. (2018). The Matthew effect in science funding. Proceedings of the National Academy of Sciences of the United States of America, 115(19), 4887–4890.

Bonacich, P. (1972). Factoring and Weighting Approaches to Status Scores and Clique Identification. Journal of Mathematical Sociology, 2(1), 113–120.

Bonacich, P. (1987). Power and Centrality: A Family of Measures. American Journal of Sociology, 92(5), 1170–1182.

Börner, K., Scrivner, O., Gallant, M., Ma, S., Liu, X., Chewning, K., Wu, L., & Evans, J. A. (2018). Skill discrepancies between research, education, and jobs reveal the critical need to supply soft skills for the data economy. Proceedings of the National Academy of Sciences of the United States of America, 115(50), 12630–12637.

Brandt, P. (2016). The Emergence of the Data Science Profession [Doctoral dissertation, Columbia University].

Brandt, P., & Timmermans, S. (2021). Abductive Logic of Inquiry for Quantitative Research in the Digital Age. Sociological Science, 8, 191–210.

Bravo, G., Farjam, M., Moreno, F.G., Birukou, A., & Squazzoni, F. (2018). Hidden Connections: Network Effects on Editorial Decisions in Four Computer Science Journals. Journal of Informetrics, 12(1), 101–112.

Breiman, L. (2001). Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Statistical Science, 16(3), 199–231.

Brin, S., & Page, L. (1998). The Anatomy of a Large-scale Hypertextual Web Search Engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.

Burt, R.S. (1987). Social Contagion and Innovation: Cohesion versus Structural Equivalence. American Journal of Sociology, 92(6), 1287–1335.

Castells, M. (1996). The Rise of the Network Society: The Information Age: Economy, Society, and Culture (Vol. 1). Hoboken, NJ: Wiley.

Christin, A. (2020). Metrics at Work: Journalism and the Contested Meaning of Algorithms. Princeton, NJ: Princeton University Press.

Davenport, T.H., & Patil, D.J. (2012). Data Scientist: The Sexiest Job Of the 21st Century. Harvard Business Review, 90(10), 70–76.

Dewey, J. (1916). Democracy and Education: An Introduction to the Philosophy of Education. New York, NY: Macmillan

Dewey, J. (1922). Human Nature and Conduct. New York, NY: The Modern Library.

Dewey, J. (1929). The Quest for Certainty: A Study of the Relation of Knowledge and Action. New York, NY: Minton, Balch.

Dewey, J. (1938). Logic: The Theory of Inquiry. New York, NY: Henry Holt and Co.

Dewey, J. (1939). Theory of Valuation. Chicago, IL: University of Chicago Press.

Donoho, D. (2017). 50 Years of Data Science. Journal of Computational and Graphical Statistics, 26(7), 745–766.

Dorschel, R., & Brandt, P. (2021). Professionalization via Ambiguity. The Discursive Construction of Data Scientists in Higher Education and the Labor Market. Zeitschrift für Soziologie, 50(3-4), 193–210.

Durkheim, É. (1893). De la division du travail social. Étude sur l’organisation des sociétés supérieures. Paris: Félix Alcan.

Durkheim, É. (1897). Le suicide. Étude de sociologie. Paris: Félix Alcan.

Eubanks, V. (2018). Automating Inequality: How High-tech Tools Profile, Police, and Punish the Poor. New York, NY: St. Martin's Press.

Evans, J., & Foster, J.G. (2019). Computation and the Sociological Imagination. Contexts, 18(4), 10–15.

Geertz, C. (1973). Thick Description: Toward an Interpretive Theory of Culture. In The Interpretation of Cultures (pp. 310–323). New York, NY: Basic Books.

Goldberg, A. (2015). In Defense of Forensic Social Science. Big Data & Society, 2(2), pp. 1–3.

González-Bailón, S. (2017). Decoding the Social World: Data Science and the Unintended Consequences of Communication. Cambridge, MA: MIT Press.

Gouldner, A.W. (1970). The Coming Crisis of Western Sociology. Portsmouth, NH: Heinemann.

Gray, P.S., Williamson, J.B., Karp, D.A., & Dalphin, J.R. (2007). The research imagination: An introduction to qualitative and quantitative methods. Cambridge: Cambridge University Press.

Grbovic, M. (2017). Search ranking and personalization at Airbnb. Proceedings of the Eleventh ACM Conference on Recommender Systems, 339–340.

Hammerbacher, J. (2009). Information platforms and the rise of the data scientist. In T. Segaran & J. Hammerbacher (Eds.), Beautiful Data: The Stories Behind Elegant Data Solutions (pp. 73–84). Sebastopol, CA: O'Reilly Media.

Healy, K. (2018). Data Visualization: A Practical Introduction. Princeton, NJ: Princeton University Press.

Hedström, P., & Swedberg, R. (1998). Social mechanisms: An introductory essay. In P. Hedström & R. Swedberg (Eds.) Social Mechanisms: An Analytical Approach to Social Theory (pp. 1–31). Cambridge: Cambridge University Press.

Heider, F. (1958). The Psychology of Interpersonal Relations. London: Psychology Press.

House, J.S. (2019). The Culminating crisis of American Sociology and its Role in Social Science and Public Policy: An Autobiographical, Multimethod, Reflexive Perspective. Annual Review of Sociology, 45, 1–26.

Ibarra, H. (1999). Provisional selves: Experimenting with Image and Identity in Professional Adaptation. Administrative Science Quarterly, 44(4), 764–791.

Jerolmack, C., & Khan, S. (2014). Talk is Cheap: Ethnography and the Attitudinal Fallacy. Sociological Methods & Research, 43(2), 178–209.

Jhaver, S., Karpfen, Y., & Antin, J. (2018). Algorithmic Anxiety and Coping Strategies of Airbnb Hosts. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 1–12.

Joas, H. (1992). Die Kreativität des Handelns. Frankfurt am Main: Suhrkamp.

Katz, E., & Katz, R. (2016). Revisiting the Origin of the Administrative versus Critical Research Debate. Journal of Information Policy, 6(1), 4–12.

Kleinberg, J.M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604–632.

Krause, M. (2021). On Sociological Reflexivity. Sociological Theory, 39(1), 3–18.

Krippner, G., Granovetter, M., Block, F., Biggart, N., Beamish, T., Hsing, Y., Hart, G., Arrighi,G., Mendell, M., Hall, J., Burawoy, M., Vogel, S., & O’Riain, S. (2004). Polanyi symposium: a conversation on embeddedness. Socio-Economic Review, 2(1), 109–135.

Kuhn, T.S. (1970). The Structure of Scientific Revolutions (2nd ed.). Chicago, IL: University of Chicago Press.

Latour, B. (1987). Science in Action: How to Follow Scientists and Engineers Through Society. Cambridge, MA: Harvard University Press.

Lazarsfeld, P.F., & Oberschall, A.R. (1965). Max Weber and Empirical Social Research. American Sociological Review, 30(2), 185–199.

Lazer, D., Hargittai, E., Freelon, D., González-Bailón, S., Munger, K., Ognyanova, K., & Radford, J. (2021). Meaningful Measures of Human Society in the Twenty-first Century. Nature, 595(7866), 189–196.

Leahey, E. (2005). Alphas and Asterisks: The Development of Statistical Significance Testing Standards in Sociology. Social Forces, 84(1), 1–24.

Leskovec, J., & Krevl, A. (2014). SNAP Datasets. Stanford University.

Lohr, S. (2015). Data-ism: The Revolution Transforming Decision Making, Consumer Behavior, and Almost Everything Else. New York, NY: Harper Collins.

Marres, N. (2017). Digital sociology: The Reinvention of Social Research. Hoboken, NJ: Wiley.

Martin, J.L. (2017). Thinking Through Methods: A Social Science Primer. Chicago, IL: University of Chicago Press.

McCormick, T.H., Lee, H., Cesare, N., Shojaie, A., & Spiro, E.S. (2017). Using Twitter for Demographic and Social Science Research: Tools for Data Collection and Processing. Sociological Methods & Research, 46(3), 390–421.

McFarland, D.A., Lewis, K., & Goldberg, A. (2016). Sociology in the Era of Big Data: The Ascent of Forensic Social Science. The American Sociologist, 47(1), 12–35.

McMahan, P., & McFarland, D.A. (2021). Creative Destruction: The Structural Consequences of Scientific Curation. American Sociological Review, 86(2), 341–376.

Mead, R. (2019). The Airbnb Invasion of Barcelona. The New Yorker, 22 April.

Merton, R.K. (1968). The Matthew Effect in Science. Science, 159(3810), 56–63.

Mohr, J.W., & Rawlings, C. (2012). Four Ways to Measure Culture: Social Science, Hermeneutics, and the Cultural Turn. In J.C. Alexanders, R.N. Jacobs, & P. Smith (Eds.), The Oxford Handbook of Cultural Sociology (pp. 70–113). Oxford: Oxford University Press.

Mützel, S., & Kressin, L. (2020). From Simmel to Relational Sociology. In S. Abrutyn & O. Lizardo (Eds.), The Handbook of Classical Sociological Theory (pp. 217–238). New York, NJ: Springer.

Mützel, S., Saner, P., & Unternährer, M. (2018). Schöne Daten! Konstruktion und Verarbeitung von digitalen Daten. In D. Houben, & B. Prietl (Eds.), Datengesellschaft (pp. 111–132). Berlin: Verlag.

Nelson, L.K. (2021, August). Early Career Faculty Spotlight. ASA Methodology Section Newsletter, 8.

Nelson, L.K. (2020). Computational Grounded Theory: A Methodological Framework. Sociological Methods & Research, 49(1), 3–42.

Nelson, L.K. (2022). Laura Nelson. GitHub.

Noble, S. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. New York, NY: New York University Press.

NORC. (2021) Get the Data. NORC at the University of Chicago.

O'Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. New York, NY: Crown Books.

Ollion, E., & Abbott, A. (2016). French Connections: The Reception of French Sociologists in the USA (1970-2012). Archives européennes de sociologie, 57(2), 331–372.

Pajo, B. (2017). Introduction to Research Methods: A Hands-on Approach. London: Sage.

R Core Team. (2021). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

Ribes, D. (2019). STS, Meet Data Science, Once Again. Science, Technology, & Human Values, 44(3), 514–539.

Romero, M. (2020). Sociology Engaged in Social Justice. American Sociological Review, 85(1), 1–30.

Salganik, M.J. (2018). Bit by Bit: Social Research in the Digital Age. Princeton, NJ: Princeton University Press.

Salganik, M. J., Lundberg, I., Kindel, A. T., Ahearn, C.E., Al-Ghoneim, K., Almaatouq, A., Altschul, D.M., Brand, J.E., Carnegie, N.B., Compton, R.J., Datta, D., Davidson, T., Filippova, A., Gilroy, C., Goode, B.J., Jahani, E., Kashyap, R., Kirchner, A., McKay, S., Morgan, A.C., …, & McLanahan, S. (2020). Measuring the Predictability of Life Outcomes with a Scientific Mass Collaboration. Proceedings of the National Academy of Sciences of the United States of America, 117(15), 8398–8403.

Schutt, R., & O'Neil, C. (2013). Doing Data Science. Sebastopol, CA: O'Reilly Media, Inc.

Shwed, U., & Bearman, P.S. (2010). The Temporal Structure of Scientific Consensus Formation. American Sociological Review, 75(6), 817–840.

SIENA. (2022). Data sets for use with Siena. Oxford University.

Silberzahn, R., Uhlmann, E.L., Martin, D.P., Anselmi, P., Aust, F., Awtrey, E., Bahník, Š., Bai, F., Bannard, C., Bonnier, E., Carlsson, R., Cheung, F., Christensen, G., Clay, R., Craig, M.A., Dalla Rosa, A., Dam, L., Evans, M.H., Flores Cervantes, I., Fong, N., …, & Nosek, B.A. (2018). Many Analysts, One Data Set: Making Transparent How Variations in Analytic Choices Affect Results. Advances in Methods and Practices in Psychological Science, 1(3), 337–356.

Simmel, G. (1908). Soziologie. Untersuchungen über die Formen der Vergesellschaftung. Berlin: Duncker & Humblot.

Squazzoni, F., Bravo, G., Farjam, M., Marusic, A., Mehmani, B., Willis, M., Birukou, A., Dondio, P., & Grimaldo, F. (2021). Peer Review and Gender Bias: A Study on 145 Scholarly Journals. Science Advances, 7(2).

Stark, D. (2009). The Sense of Dissonance: Accounts of Worth in Economic Life. Princeton, NJ: Princeton University Press.

Stinchcombe, A.L. (1982). Should Sociologists Forget Their Mothers and Fathers? American Sociologist, 17(1), 2–11.

Turco, C.J., & Zuckerman, E.W. (2017). Verstehen for Sociology: Comment on Watts. American Journal of Sociology, 122(4), 1272–1291.

Twitter, Inc. (2022). Twitter API Academic Research Access. Twitter.

Vedres, B. (2022). Balazs Vedres. CEU.

Vedres, B., & Stark, D. (2010). Structural Folds: Generative Disruption in Overlapping Groups. American Journal of Sociology, 115(4), 1150–1190.

Wagner-Pacifici, R., Mohr, J.W., & Breiger, R.L. (2015). Ontologies, Methodologies, and New uses of Big Data in the Social and Cultural Sciences. Big Data & Society, 2(2), 1–11.

Waight, H. (2021). Recovering John Dewey’s Lost Vision for Social Science in Contemporary American Sociology. The American Sociologist, 52, 420–448.

Watts, D.J. (2014). Common Sense and Sociological Explanations. American Journal of Sociology, 120(2), 313–351.

Weber, M. (2004). Science as a Vocation. In D.S. Owen, T.B. Strong, & R. Livingstone (Eds.), The Vocation Lectures (R. Livingsone, Trans.) (pp. 1–31). Indianapolis, IN: Hackett. (Original work published 1919)

Wellman, B. (1997). An Electronic Group is Virtually a Social Network. In S. Jiesler (Ed.), Culture of the Internet (pp. 179–205). Mahwah, NJ: Lawrence Erlbaum.

White, H.C. (2001). Interview with Harrison White: 4-16-01 by Alair MacLean and Andy Olds. Theory@Madison.

White, H.C., Boorman, S.A., & Breiger, R.L. (1976). Social Structure from Multiple Networks. I. Blockmodels of Roles and Positions. American Journal of Sociology, 81(4), 730–780.

Whitford, J. (2022). Disambiguating Dewey; or Why Pragmatist Action Theory Neither Needs Nor Asks Paradigmatic Privilege. In N. Gross, I.A. Reed, & C. Winship (Eds.), The New Pragmatist Sociology: Inquiry, Agency, and Democracy. New York, NY: Columbia University Press.

Winship, C., & Morgan, S.L. (1999). The Estimation of Causal Effects from Observational Data. Annual Review of Sociology, 25(1), 659–706.




How to Cite

Brandt, P. (2022). Sociology’s Stake in Data Science. Sociologica, 16(2), 149–166.