The Crisis of Social Categories in the Age of AI
DOI:
https://doi.org/10.6092/issn.1971-8853/15931Keywords:
AI, Machine learning, Social categoriesAbstract
This article explores the change in calculation methods induced by deep learning techniques. While more traditional statical methods are based on well instituted categories to measure the social world, these categories are today denounced as a set of hardened and abstract conventions that are incapable of conveying the complexification of social life and the singularities of individuals. Today AI models try to overcome some criticism raised by rigid social categories by combining a "spatial and temporal expansion" of the data space, producing a global transformation of the calculation methods.
References
Abbott, A. (1988). Transcending General Linear Reality. Sociological Theory, 6(2), 169–186. https://doi.org/10.2307/202114
Angeletti, T. (2011). Faire la réalité ou s’y faire. La modélisation et les déplacements de la politique économique au tournant des années 70. Politix, 3(95), 47–72. https://doi.org/ 10.3917/pox.095.0047
Boltanski, L. (2014). Quelle statistique pour quelle critique?. In I. Bruno, E. Didier & J. Prévieux (Eds.), Statactivisme. Comment lutter avec des nombres?. Paris: Zones.
Brayne, S., & Christin, A. (2020). Technologies of Crime Prediction: The Reception of Algorithms in Policing and Criminal Courts. Social Problems, 68(3), 608–624. https://doi.org/ 10.1093/socpro/spaa004
Breiman, L. (2001). Statistical Modeling: The Two Cultures. Statistical Science, 16(3), 199–215. https://doi.org/10.1214/ss/1009213726
Bruno, I., Didier, E., & Prévieux, J. (Eds.). (2015). Statactivisme: Comment lutter avec des nombres. Paris: Zones.
Cardon, D., Cointet, J.-P., & Mazières, A. (2018). Neurons Spike Back. The Invention of Inductives Machines and the Artificial Intelligence Controversy. Réseaux, 5(211), 173–220. https://doi.org/10.3917/res.211.0173
Cevolini, A., & Esposito, E. (2020). From Pool to Profile: Social Consequences of Algorithmic Prediction in Insurance. Big Data & Society, 7(2). https://doi.org/10.1177/ 2053951720939228
Cheney-Lippold, J. (2017). We are Data. Algorithms and the Making of our Digital Selves. New York, NY: New York University Press. https://doi.org/10.2307/j.ctt1gk0941
Cornuéjols, A., Miclet, L. & Barra, V. (2018). Apprentissage Artificial: Deep Learning, Concepts et Algorithmes, 3 édition. Paris: Eyrolles.
Crawford, K., & Calo, R. (2016). There Is a Blind Spot in AI Research. Nature, 538, 311–313. https://doi.org/10.1038/538311a
Deleuze, G. (1990). Post-scriptum sur les sociétés de contrôle. L’autre journal, 1.
Desrosières, A. (2014). Prouver et gouverner. Une analyse politique des statistiques publiques.
Paris: La découverte. https://doi.org/10.3917/dec.desro.2014.01
Desrosières, A., & Thévenot, L. (1988). Les catégories socioprofessionnelles. Paris: La découverte.
Eubanks, V. (2017). Automating Inequality, How High-tech Tools Profile, Police, and Punish the Poor. New York, NY: St. Martin’s Press. https://doi.org/10.6092/issn.1971-8853/15931
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press, Cambridge, MA. http://www.deeplearningbook.org
Haggerty, K.D, & Ericson, R.V. (2000). The Surveillant Assemblage. British Journal of Sociology, 51(4), 605–622. https://doi.org/10.1080/00071310020015280
Hahn, R.W., & Tetlock, P.C. (2005). Using Information Markets to Improve Public Decision Making. Harvard Journal of Law and Public Policy, 29(1), 213–289.
Harcourt, B. (2015). Exposed. Desire and Disobedience in the Digital Age. Cambridge, MA: Harvard University Press. https://doi.org/10.4159/9780674915077
Harcourt, B. (2006). Against Prediction: Profiling, Policing and Punishing in an Actuarial Age. Chicago, IL: University of Chicago Press. https://doi.org/10.7208/chicago/9780226315997.001.0001
Hénin, C. (2021). Confier une décision vitale à une machine. Réseaux, 225(1), 187–213. https: //doi.org/10.3917/res.225.0187
Hofmann, H.J. (1990). Die Anwendung des CART-Verfahrens zur statistischen Bonitätsanalyse von Konsumentenkrediten. Zeitschrift fur Betriebswirtschaft, 60, 941–962.
Jobin, A., Ienca, M., & Vayena, E. (2019). The Global Landscape of AI Ethics Guidelines. Nature Machine Intelligence, 1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2
John-Mathews, J.-M. (2021). Critical Empirical Study on Black-box Explanations in AI. arXiv 2109.15067.https://doi.org/10.48550/arXiv.2109.15067
John-Mathews, J.-M. (2022). Some Critical and Ethical Perspectives on the Empirical Turn of AI Interpretability. Technological Forecasting and Social Change,< em>174, 121209. https: //doi.org/10.1016/j.techfore.2021.121209
John-Mathews, J.-M., Cardon, D., & Balagué, C. (2022). From Reality to World. A Critical Perspective on AI Fairness. Journal of Business Ethics, 178, 945–959. https://doi.org/10. 1007/s10551-022-05055-8
John-Mathews, J.-M., De Mourat, R., De Ricci, M., & Crépel, M. (2023). Re-enacting Machine Learning Practices to Inquire into the Moral Issues They Pose. Convergence, forthcoming.
Koopman, C. (2019). How We Became Our Data. A Genealogy of the Informational Person. Chicago: The University of Chicago Press.
Krasmann, S. (2020). The Logic of the Surface: On the Epistemology of Algorithms in Times of Big Data. Information, Communication & Society, 23(14), 2096–2109. https://doi.org/ 10.1080/1369118X.2020.1726986
Le Bras, H. (2000). Naissance de la mortalité. L’origine politique de la statistique et de la démographie. Paris: Seuil/Gallimard.
Lu, T., Zhang, Y., & Li, B. (2019). The Value of Alternative Data in Credit Risk Prediction: Evidence from a Large Field Experiment, ICIS 2019 Conference, Munich, December.
Lyon, D. (2001). Surveillance Society: Monitoring Everyday Life. Buckingham: Open University Press.
Lury, C., & Day, S. (2019). Algorithmic Personalization as a Mode of Individuation. Theory, Culture & Society,36(2), 17–37. https://doi.org/10.1177/0263276418818888
Martuccelli D. (2010). La société singulariste. Paris: éd. Armand Colin.
Mau, S. (2019). The Metric Society. On the Quantification of the Social. Cambridge, MA: Polity Press.
Mitchell, T. (1997). Machine Learning. Boston, MA: McGraw-Hill.
Murphy, M. (2017). The Economization of Life. Durham, NC: Duke University Press. https://doi.org/10.1515/9780822373216
Olah, C., Mordvintsev, A., & Schubert, L. (2017). Feature Visualization. Distill, 2(11). https://doi.org/10.23915/distill.00007
Rogers, R. (2009). Post-Demographic Machines. In A. Dekker & A. Wolfsberger (Eds.), Walled Garden (pp. 344–355). Amsterdam: Virtual Platform. https://doi.org/10.6092/issn.1971-8853/15931
Rouvroy, A., & Berns, T. (2013). Gouvernementalité algorithmique et perspectives d’émancipation. Réseaux, 1, 163–196. https://doi.org/10.3917/res.177.0163
Rouvroy, A., & Berns, T. (2013). Algorithmic governmentality and prospects of emancipation. Disparateness as a precondition for individuation through relationships?. Réseaux, 177(1), 163–196. https://doi.org/10.3917/res.177.0163"
Salganik, M.J., Lundberg, I., Kindel, A.T., Ahearn, C.E., Al-Ghoneim, K., Almaatouq, A., Altschul, D.M., Brand, J.E., Carnegie, N.B., Compton, R.J., Datta, D., Davidson, T., Filippova, A., Gilroy, C., Goode, B.J., Jahani, E., Kashyap, R., Kirchner, A., McKay, S., ... McLanahan, S. (2020). Measuring the Predictability of Life Outcomes with a Scientific Mass Collaboration. Proceedings of the National Academy of Sciences of the United States of America, 117(15), 8398–8403. https://doi.org/10.1073/pnas.1915006117
Solove, D. (2004). The Digital Person: Technology and Privacy in the Information Age. New York, NY: New York University Press.
Terranova, T. (2004). Network Culture: Politics for the Information Age. London: Pluto.
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Jean-Marie John-Mathews, Dominique Cardon
This work is licensed under a Creative Commons Attribution 4.0 International License.