AI Methodology Map. Practical and Theoretical Approach to Engage with GenAI for Digital Methods Research

Authors

  • Janna Joceli Omena Department of Digital Humanities, King's College London https://orcid.org/0000-0001-8445-9502
  • Antonella Autuori University of Applied Sciences and Arts of Southern Switzerland (SUPSI); RMIT University, Melbourne https://orcid.org/0000-0002-5725-8446
  • Eduardo Leite Vasconcelos Universidade Federal da Bahia (UFBA) https://orcid.org/0000-0002-0937-395X
  • Matteo Subet University of Applied Sciences and Arts of Southern Switzerland (SUPSI) https://orcid.org/0009-0003-4769-9568
  • Massimo Botta University of Applied Sciences and Arts of Southern Switzerland (SUPSI) https://orcid.org/0009-0005-8894-2661

DOI:

https://doi.org/10.6092/issn.1971-8853/19566

Keywords:

Generative Artificial Intelligence, GenAI, Digital Methods, AI in Education, Image Networks, Technicity, Algorithmic Race Stereotypes

Abstract

This essay accounts for a novel way to explore generative artificial intelligence (GenAI) applications for digital methods research, based on the AI Methodology Map. The map is a pedagogical resource and a theoretical framework designed to structure, visually represent, and explore GenAI web-based applications. As an external object, the map functions as a valuable teaching material and interactive toolkit. As a theoretical framework, it is embodied in a static representation that provides principles for engaging with GenAI. Aligned with digital methods’ practical, technical, and theoretical foundations, the map facilitates explorations and critical examinations of GenAI and is supported by visual thinking and data practice documentation. The essay then outlines the map principles, its system of methods, educational entry points, and applications. The organization is as follows: First, we review GenAI methods, discussing how to access them, and their current uses in social research and the classroom context. Second, we define the AI Methodology Map and unpack the theory it embodies by navigating through the three interconnected methods constituting it: making room for, repurposing and designing digital methods-oriented projects with GenAI. Third, we discuss how the map bridges GenAI concepts, technicity, applications and the practice of digital methods, exposing its potential and reproducibility in educational settings. Finally, we demonstrate the AI Methodology Map’s application, employing a digital methodology to analyze algorithmic race stereotypes in image collections generated by nine prominent GenAI apps. In conclusion, the essay unveils methodological challenges, presenting provocations and critiques on repurposing GenAI for social research. By encompassing practice, materiality and theoretical perspective, we argued that the AI Methodology Map bridges theoretical and empirical engagement with GenAI, serving them together or separately, thus framing the essay’s main contribution. We expect that the AI Methodology Map’s reproducibility will likely lead to further discussions, expanding those we present here.

References

Abid, A., Abdalla, A., Abid, A., Khan, D., Alfozan, A., & Zou, J. (2019). Gradio: Hassle-Free Sharing and Testing of ML Models in the Wild. 2019 ICML Workshop on Human in the Loop Learning. arXiv, 1906.02569. https://doi.org/10.48550/arXiv.1906.02569

Agência Lusa. (2023). Universidades de Portugal, Brasil e Espanha juntam-se para discutir impacto e “transição digital” como resposta aos novos “desafios. Observador, 8 November. https://observador.pt/2023/11/08/universidades-de-portugal-brasil-e-espanha-juntam-se-para-discutir-impacto-e-transicao-digital-como-resposta-aos-novos-desafios/

Amietta, R., Matos, A.F.N., & Guilbault, A. (2023). DEW. https://nerd-life-squad.github.io/about

Anderson, L.W., & Krathwohl, D.R. (2001). A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives: Complete Edition. New York, NY: Longman.

Anderson, C., Heinisch, J.S., Deldari, S., Salim, F. D., Ohly, S., David, K., & Pejovic, V. (2023). Toward Social Role-based Interruptibility Management. IEEE Pervasive Computing, 22(1), 59–68. https://doi.org/10.1109/mprv.2022.3229905

Antolak-Saper, N., Beilby, K., Boniface, B., Bui, D., Burgess, P., Cheema, A., Crocco, M., Fordyce, R., Galbraith, K., Lansdell, G., Lim, C., Moore, J., Nathania, A., Nawaz, S., Raveendran, L., Saha, T., Sapsed, C., Shannon, B., Soh, K., Swiecki, Z., Vu, T., Wagstaff, P., Wallingford, E., Wong, P., & Zaid, F. (2023). Guides for Assessment Re(design) and Reform. AI in Education Learning Circle. https://www.ai-learning-circle-mon.com/

Arnheim, R. (1980). A Plea for Visual Thinking. Critical Inquiry, 6(3), 489–497. https://doi.org/10.1086/448061

Arnheim, R., & Grundmann, U. (2001). The Intelligence of Vision: An Interview with Rudolf Arnheim. Cabint Magazine, 26 April. https://www.cabinetmagazine.org/issues/2/grundmann_arnheim.php

Báez, J.M. (2023). Performing Representational Labor: Blackness, Indigeneity, and Legibility in Global Latinx Media Cultures. Feminist Media Studies, 23(5), 2455–2470. https://doi.org/10.1080/14680777.2022.2056755

Baidoo-Anu, D., & Ansah, L.O. (2023). Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. Journal of AI, 7(1), 52–62. https://doi.org/10.61969/jai.1337500

Banh, L., & Strobel, G. (2023). Generative artificial intelligence. Electronic Markets, 33(1). https://doi.org/10.1007/s12525-023-00680-1

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. Proceedings of the International AAAI Conference on Web and Social Media, 3(1), 361–362. https://doi.org/10.1609/icwsm.v3i1.13937

Birhane, A. (2022). The Unseen Black Faces of AI Algorithms. Nature, 610(7932), 451–452. https://doi.org/10.1038/d41586-022-03050-7

Boiret, G. (2016). PhantomBuster. [Software]. https://phantombuster.com/

Borra, E. (2023). ErikBorra/PromptCompass (v0.4). Zenodo. https://doi.org/10.5281/zenodo.10252681

Borra, E. (2024). The Medium Is the Methods: Using Large Language Models (LLMs) in Digital Research. [Keynote]. Digital Methods Winter School, University of Amsterdam, Amsterdam, The Netherlands.

Botta, M., Autuori, A., Subet, M., Terenghi, G., Omena, J.J., Leite, E., Kim, F.C. (2024). Designing With: A New Educational Module to Integrate Artificial Intelligence, Machine Learning and Data Visualization in Design Curricula. https://designingwithai.ch/

Bounegru, L., Gray, J., Venturini, T., & Mauri, M. (Eds.). (2018). A Field Guide to ‘Fake News’ and Other Information Disorders. Public Data Lab. https://doi.org/10.2139/ssrn.3097666

Bunz, M. [GoetheUK]. (2022). The Culture of Artificial Intelligence. Goethe Annual Lectures at the Goethe-Institut London. [Video]. YouTube, 24 November. https://www.youtube.com/watch?v=bTR6EP34W_w

Buolamwini, J.A. (2017). Gender Shades: Intersectional Phenotypic and Demographic Evaluation of Face Datasets and Gender Classifiers. [Doctoral dissertation, University of Missouri]. Massachusetts Institute of Technology, Cambridge.

Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. Proceedings of Machine Learning Research, 81, 77–91.

Burkhardt, S., & Rieder, B. (2024). Foundation Models are Platform Models: Prompting and the Political Economy of AI. Big Data & Society, 11(2). https://doi.org/10.1177/20539517241247839

Castro, J.C.M., & Shumsher, S. (2023). Situating Gen-AI Pain & Pleasure: Interpretative Querying Approach Combining Situational Analysis with Digital Methods [Presentation slides]. Faculdade de Ciências Sociais e Humanas, Universidade NOVA de Lisboa. http://dx.doi.org/10.13140/RG.2.2.16436.67201

Chao, J. (2021). Memespector GUI: Graphical User Interface Client for Computer Vision APIs (Version 0.2.5 beta). [Software]. https://github.com/jason-chao/memespector-gui

Chauhan, A., Anand, T., Jauhari, T., Shah, A., Singh, R., Rajaram, A., & Vanga, R. (2024). Identifying Race and Gender Bias in Stable Diffusion AI Image Generation. 2024 IEEE 3rd International Conference on AI in Cybersecurity (ICAIC), 1–6. https://doi.org/10.1109/ICAIC60265.2024.10433840

Ciston, S. (2023). A Critical Field Guide for Working with Machine Learning Datasets. https://knowingmachines.org/critical-field-guide

Colombo, G., De Gaetano, C., & Niederer, S. (2023). Prompting For Biodiversity: Visual Research With Generative AI. Digital Methods Summer School 2023. https://wiki.digitalmethods.net/Dmi/PromptingForBiodiversity

Cross, N. (2001). Designerly Ways of Knowing: Design Discipline versus Design Science. Design Issues, 17(3), 49–55. https://doi.org/10.1162/074793601750357196

Dąbkowski, P., & Staniszewski, M. (2022). ElevenLabs. https://elevenlabs.io/

Dayma, B. (2022). Crayon (v3). https://www.craiyon.com/

de Seta, G., Pohjonen, M., & Knuutila, A. (2023). Synthetic Ethnography: Field Devices for the Qualitative Study of Generative Models. SocArXiv. https://doi.org/10.31235/osf.io/zvew4

Dove, G., Halskov, K., Forlizzi, J. & Zimmerman, J. (2017). UX Design Innovation: Challenges for Working with Machine Learning as a Design Material. Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp. 278–288). ACM Press. https://dl.acm.org/doi/10.1145/3025453.3025739

Duguay, S., & Gold-Apel, H. (2023). Stumbling Blocks and Alternative Paths: Reconsidering the Walkthrough Method for Analyzing Apps. Social Media + Society, 9(1). https://doi.org/10.1177/20563051231158822

Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A., Baabdullah, A.,M., Koohang, A., Raghavan, V., Ahuja,M., Albanna, H., Albashrawi, M.A., Al-Busaidi, A.S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., Carter, L., Chowdhury, S., Crick, T., Cunningham, S.W., Davies, G.H., Davison, R.M., Dé, R., Dennehy, D., Duan, Y., Dubey, R., Dwivedi, R., Edwards, J.S., Flavián, C., Gauld, R., Grover, V., Hu, M.-C., Janssen, M., Jones, P., Junglas, I., Khorana, S., Kraus, S., Larsen, K.R., Latreille, P., Laumer, S., Malik, F.T., Mardani, A., Mariani, M., Mithas, S., Mogaji, E., Nord, J.H., O’Connor, S., Okumus, F., Pagani, M., Pandey, N., Papagiannidis, S., Pappas, I.,O., Pathak, N., Pries-Heje, J., Raman, R., Rana, N.P., Rehm, S.-V., Ribeiro-Navarrete, S., Richter, A., Rowe, F., Sarker, S., Carsten Stahl, S., Kumar Tiwari, M., van der Aalst, W., Venkatesh, V., Viglia, G., Wade, M., Walton, P., Wirtz, J., & Wright, R. (2023). “So What if ChatGPT Wrote it?” Multidisciplinary Perspectives on Opportunities, Challenges and Implications of Generative Conversational AI for Research, Practice and Policy. International Journal of Information Management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642

Edkie, A., Pandey, D., & Roy, S. (2020). Murf.AI. https://murf.ai/

Farooq, M., Buzdar, H. Q. & Muhammad, S. (2023). AI-Enhanced Social Sciences: A Systematic Literature Review and Bibliographic Analysis of Web of Science Published Research Papers. Pakistan Journal of Society, Education and Language (PJSEL), 10(1), 250–267.

Ferrara, E. (2024). Fairness and Bias in Artificial Intelligence: A Brief Survey of Sources, Impacts, and Mitigation Strategies. Sci, 6(1). https://doi.org/10.3390/sci6010003

Franklin, U. (1990). The Real World of Technology. Toronto: CBC.

García-Peñalvo, F., & Vázquez-Ingelmo, A. (2023). What Do We Mean by GenAI? A Systematic Mapping of The Evolution, Trends, and Techniques Involved in Generative AI. International Journal of Interactive Multimedia and Artificial Intelligence, 8(4), 7. https://doi.org/10.9781/ijimai.2023.07.006

Gaspar, B. (2023). Cientistas divulgam 10 diretrizes para a Educação lidar com a Inteligência Artificial. Fepesp - Federação Dos Professores Do Estado de São Paulo. https://fepesp.org.br/noticia/cientistas-divulgam-10-diretrizes-para-a-educacao-lidar-com-a-inteligencia-artificial/

Google Creative Lab (2017). Teachable Machine. [software]. https://teachablemachine.withgoogle.com/

Gorska, A.M., & Jemielniak, D. (2023). The Invisible Women: Uncovering Gender Bias in AI-generated Images of Professionals. Feminist Media Studies, 23(8), 4370–4375. https://doi.org/10.1080/14680777.2023.2263659

Goulart, J. (2024). Silvio Meira: ‘Estamos na era da pedra lascada da IA, mas o futuro chega em 800 dias’. Brazil Journal, 16 March. https://braziljournal.com/silvio-meira-estamos-na-era-da-pedra-lascada-da-ia-mas-o-futuro-chega-em-800-dias/

Gray, J., Bounegru, L., Rogers, R., Venturini, T., Ricci, D., Meunier, A., Mauri, M., Niederer, S., Sánchez Querubín, N., Tuters, M., Kimbell, L., & Munk, K. (2022). Engaged Research-led Teaching: Composing Collective Inquiry with Digital Methods and Data. Digital Culture & Education, 14(3), 55–86.https://www.digitalcultureandeducation.com/volume-14-3

Graziani, M., Dutkiewicz, L., Calvaresi, D., Amorim, J. P., Yordanova, K., Vered, M., Nair, R., Henriques Abreu, P., Blanke, T., Pulignano, V., Prior, J.O., Lauwaert, L., Reijers, W., Depeursinge, A., Andrearczyk, V., & Müller, H. (2023). A Global Taxonomy of Interpretable AI: Unifying the Terminology for the Technical and Social Sciences. Artificial Intelligence Review, 56(4), 3473–3504. https://link.springer.com/article/10.1007/s10462-022-10256-8

Greene, C. (2023). AI and the Social Sciences: Why All Variables are Not Created Equal. Res Publica, 29(2), 303–319. https://doi.org/10.1007/s11158-022-09544-5

Hartman, J., Schwenzow, J., & Witte, M. (2023). The Political Ideology of Conversational AI: Converging Evidence on ChatGPT’s Pro-environmental, Left-libertarian Orientation. arXiv. https://doi.org/10.2139/ssrn.4316084

Hoel, A. S. (2012). Technics of Thinking. In A.S. Hoel & I. Folkvord (Eds.), Ernst Cassirer on Form and Technology: Contemporary Readings (pp. 65–91). London: Palgrave Macmillan.

Honig, C., Rios, S., & Oliveira, E. (2023). A Tool for Learning: Classroom Use-cases for Generative AI. The Chemical Engineer, 1 June. https://www.thechemicalengineer.com/features/a-tool-for-learning-classroom-use-cases-for-generative-ai/

Hooks, B. (1992). Black Looks: Race and Representation. Boston, MA: End Press.

Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE, 9(6), e98679. https://doi.org/10.1371/journal.pone.0098679

Kendall, A., Grimes, M., & Cipolla, R. (2016). PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. arXiv. https://doi.org/10.1109/ICCV.2015.336

Koplin, J.J. (2023). Dual-use Implications of AI text Generation. Ethics and Information Technology, 25(2), 32. https://doi.org/10.1007/s10676-023-09703-z

Leshkevich, T., & Motozhanets, A. (2022). Social Perception of Artificial Intelligence and Digitization of Cultural Heritage: Russian Context. Applied Sciences, 12(5), 2712. https://doi.org/10.3390/app12052712

Limewire. (2023). BlueWillow. [Software]. https://www.bluewillow.ai/

Luccioni, A.S., Akiki, C., Mitchell, M., & Jernite, Y. (2023). Stable Bias: Evaluating Societal Representations in Diffusion Models. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, & S. Levine (Eds.), Advances in Neural Information Processing Systems (pp. 56338–56351). New York, NY: Curran Associates.

Maier, N., Parodi, F., & Verna, S. (2004). DownThemAll! (v4.12.1). [Web browser plugin]. https://www.downthemall.org/

Manovich, L. (2013). Museum Without Walls, Art History Without Names: Methods and Concepts for Media Visualization. In C. Vernallis, A. Herzog & J. Richardson (Eds.), The Oxford Handbook of Sound and Image in Digital Media (pp. 252–278). Oxford: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199757640.013.005

Manovich, L. (2020). Cultural Analytics. Cambridge, MA: MIT Press. https://doi.org/10.7551/mitpress/11214.001.0001

Marres, N. (2017). Digital Sociology: The Reinvention of Social Research. London: Wiley.

Mauri, M. & Ciuccarelli, P. (2016). Designing Diagrams for Social Issues. Future Focused Thinking - DRS International Conference 2016. https://doi.org/10.21606/drs.2016.185

Mauri, M., Briones, M.A., Gobbo, B. & Colombo, G. (2020). Research Protocol Diagrams as Didatic Tools to Act Critically in Dataset Design Processes. INTED2020 Proceedings, (pp. 9034–9043). https://doi.org/10.21125/inted.2020.2470

Microsoft. (2023). Bing Image Creator. https://www.bing.com/images/create

Midjourney Inc. (2022). Midjourney (Version 5.2). https://www.midjourney.com/

Mostaque, E. (2019). Stability.ai. https://stability.ai/

Nicoletti, L., & Bass, D. (2023). Humans Are Biased. Generative AI Is Even Worse. Bloomberg, 9 June. https://www.bloomberg.com/graphics/2023-generative-ai-bias/

Noble, U.S. (2013). Google Search: Hyper-visibility as a Means of Rendering Black Women and Girls Invisible. InVisible Culture, 19. https://doi.org/10.47761/494a02f6.50883fff

Noble, S.U. (2018). Algorithms of Oppression. New York, NY: New York University Press. https://doi.org/10.18574/nyu/9781479833641.001.0001

Omena, J.J. (2021a). Digital Methods and Technicity-of-the-Mediums. From Regimes of Functioning to Digital Research. [Doctoral Dissertation, Universidade NOVA de Lisboa]. http://hdl.handle.net/10362/127961

Omena, J.J., Pilipets, E., Gobbo, B., & Chao, J. (2021b). The Potentials of Google Vision API-based Networks to Study Natively Digital Images. Revista Diseña, 19. https://doi.org/10.7764/disena.19.article.1

Omena, J.J. (2022). Technicity-of-the-mediums. In A. Ceron (Ed.), Elgar Encyclopedia of Technology and Politics (pp. 77–81). Cheltenham: Elgar.

OpenAI. (2023). ChatGPT. Large Language Model. OPenAI. https://chat.openai.com

OpenAI, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Leoni Aleman, F., Almeida, D., Altenschmidt, J., Altman, S., Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom, V., Baltescu, P., Bao, H., Bavarian, M., Belgum, J., Bello, I., Berdine, J., Bernadett-Shapiro, G., Berner, C., Bogdonoff, L., Boiko, O., Boyd, M., Brakman, A.L., Brockman, G., Brooks, T., Brundage, M., Button, K., Cai, T., Campbell, R., Cann, A., Carey, B., Carlson, C., Carmichael, R., Chan, R., Chang, C., Chantzis, F., Chen, D., Chen, S., Chen, R., Chen, J., Chen, M., Chess, B., Cho, C., Chu, C., Won Chung, H., Cummings, D., Currier, J., Dai, Y., Decareaux, C., Degry, T., Deutsch, N., Deville, D., Dhar, A., Dohan, D., Dowling, S., Dunning, S., Ecoffet, A., Eleti, A., Eloundou, T., Farhi, D., Fedus, L., Felix, N., Posada Fishman, S., Forte, J., Fulford, I., Gao, L., Georges, E., Gibson, C., Goel, V., Gogineni, T., Goh, G., Gontijo-Lopes, R., Gordon, J., Grafstein, M., Gray, S., Greene, R., Gross, J., Shane Gu, S., Guo, Y., Hallacy, C., Han, J., Harris, J., He, Y., Heaton, M., Heidecke, J., Hesse, C., Hickey, A., Hickey, W., Hoeschele, P., Houghton, B., Hsu, K., Hu, S., Hu, X., Huizinga, J., Jain, S., Jain, S., Jang, J., Jiang, A., Jiang, R., Jin, H., Jin, D., Jomoto, S., Jonn, B., Jun, H., Kaftan, T., Kaiser, Ł., Kamali, A., Kanitscheider, I., Shirish Keskar, N., Khan, T., Kilpatrick, L., Wook Kim, J., Kim, C., Kim, Y., Kirchner, J.H., Kiros, J., Knight, M., Kokotajlo, D., Kondraciuk, Ł., Kondrich, A., Konstantinidis, Kosic, K., Krueger, G., Kuo, V., Lampe, M., Lan, I., Lee, T., Leike, J., Leung, J., Levy, A.D., Ming Li, C., Lim, R., Lin, M., Lin, S., Litwin, M., Lopez, T., Lowe, R., Lue, P., Makanju, A., Malfacini, K., Manning, S., Markov, T., Markovski,Y., Martin, B., Mayer, K., Mayne, A., McGrew, B., Mayer McKinney, S., McLeavey, C., McMillan, P., McNeil, J., Medina, D., Mehta, A., Menick, J., Metz, L., Mishchenko, A., Mishkin, P., Monaco, V., Morikawa, E., Mossing, D., Mu, T., Murati, M., Murk, O., Mély, D., Nair, A., Nakano, R., Nayak, R., Neelakantan, A., Ngo, R., Noh, H., Ouyang, L., O’Keefe, C., Pachocki, J.,Paino, A., Palermo, J., Pantuliano, A., Parascandolo, G., Parish, J., Parparita, E., Passos, A., Pavlov, M., Peng, A., Perelman, A., de Avila Belbute Peres, F., Petrov, M., Ponde de Oliveira Pinto, H., Rai Pokorny, .M., Pokrass, M., Pong, V.,H., Powell, T., Power, A., Power, B., Proehl, E., Puri, R., Radford, A., Rae, J., Ramesh, A., Cameron Raymond, Real, F., Rimbach, K., Ross, C., Rotsted, B., Roussez, H., Ryder, N., Saltarelli, M., Sanders, T., Santurkar, S., Sastry, G., Schmidt, H., Schnurr, D., Schulman, J., Selsam, D., Sheppard, K., Sherbakov, T., Shieh, J., Shoker, S., Shyam, P., Sidor, S., Sigler, E., Simens, M., Sitkin, J., Slama, K., Sohl, I., Sokolowsky, B., Song, Y., Staudacher, N., Such, F.P., Summers, N., Sutskever, I., Tang, J., Tezak, N., Thompson, M.B., Tillet, P., Tootoonchian, A., Tseng, E., Tuggle, P., Turley, N., Tworek, J., Cerón Uribe, F.J., Vallone, A., Vijayvergiya, A., Voss, C., Wainwright, C., Wang, J.J., Wang, A., Wang, B., Ward, J., Wei, J., Weinmann, C.J., Welihinda, A., Welinder, P., Weng, J., Weng, L., Wiethoff, M., Willner, D., Winter, C., Wolrich, S., Wong, H., Workman, L., Wu, S., Wu, J., Wu, M., Xiao, K., Xu, T., Yoo, S., Yu, K., Yuan, Q., Zaremba, W., Zellers, R., Zhang, C., Zhang, M., Zhao, S., Zheng, T., Zhuang, J., Zhuk, W., & Zoph, B. (2024). GPT-4 Technical Report. arXiv. http://arxiv.org/abs/2303.08774

Pask, G. (1975). Minds and Media in Education and Entertainment: Some Theoretical Comments Illustrated by the Design and Operation of a System for Exteriorizing and Manipulating Individual Theses. In R. Trappl & G. Pask (Eds.), Progress in Cybernetics and System Research (pp. 38–50). London: Hemisphere.

Peeters, S. (2023). Zeeschuimer (Version 1.4). [Firefox plugin]. https://doi.org/10.5117/CCR2022.2.007.HAGE

Perez, J., Castro, M., & Lopez, G. (2023). Serious Games and AI: Challenges and Opportunities for Computational Social Science. IEEE Access, 11, 62051–62061. https://doi.org/10.1109/ACCESS.2023.3286695

Peeters, S., & Hagen, S. (2022). The 4CAT Capture and Analysis Toolkit: A Modular Tool for Transparent and Traceable Social Media Research. Computational Communication Research, 4(2), 571–589. https://computationalcommunication.org/ccr/article/view/120

Popescu, A., & Schut, A. (2023). Generative AI in Creative Design Processes: aDive into Possible Cognitive Biases. In D. De Sainz Molestina, L. Galluzzo, F. Rizzo & D. Spallazzo (Eds.), IASDR 2023: Life-Changing Design (pp. 1–10). https://doi.org/10.21606/iasdr.2023.784

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv. http://arxiv.org/abs/2204.06125

Rieder, B. (2020). Engines of Order: a Mechanology of Algorithmic Techniques. Amsterdam: Amsterdam University Press.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. (2021). High-Resolution Image Synthesis with Latent Diffusion Models. arXiv. https://doi.org/10.1109/CVPR52688.2022.01042

Rogers, R. (2013). Digital Methods. Cambridge, MA: MIT Press.

Rogers, R. & Lewthwaite, S. (2019). Teaching Digital Methods: Interview. with Richard Rogers. Revista Diseña, 14, 12–37. https://doi.org/10.7764/disena.14.12-37

Rogers, S., & Cairo, A. (2022). TwoTone. https://twotone.io/

Rozado, D. (2023). The Political Biases of ChatGPT. Social Sciences, 12(3), 148. https://doi.org/10.3390/socsci12030148

Russell Group. (2023). New Principles on Use of AI in Education. The Russell Group, 4 June. https://russellgroup.ac.uk/news/new-principles-on-use-of-ai-in-education/

Salvaggio, E. (2022). How to Read an AI Image. Cybernetic Forests, 2 October. https://www.cyberneticforests.com/news/how-to-read-an-ai-image

Shameem, S. (2022). Lexica AI. https://lexica.art/

Sharma, S. (2024). Understanding Digital Racism: Networks, Algorithms, Scale. Lanham, MD:Rowman & Littlefield.

Shrestha, Y.R., von Krogh, G., & Feuerriegel, S. (2023). Building Open-Source AI. Nature Computational Science, 3, 908–911 http://dx.doi.org/10.2139/ssrn.4614280

Silva, T. (2023). Mapeamento de Danos e Discriminação Algorítmica. Desvelar. https://desvelar.org/casos-de-discriminacao-algoritmica/

Sinclair, D., Dowdeswell, T., & Goltz, N. (2023). Artificially Intelligent Sex Bots and Female Slavery: Social Science and Jewish Legal and Ethical Perspectives. Information & Communications Technology Law, 32(3), 328–355. https://doi.org/10.1080/13600834.2022.2154050

Sinclair, S., & Rockwell, G. (2003). Voyant Tools (v2.6.13). [Software]. https://voyant-tools.org/

Souza, R. [@renatasouzario]. (2023). Racismo nas plataformas de inteligência artificial! [Video]. Instagram, 25 October. https://www.instagram.com/reel/Cy1p6EQpwXB/?igshid=MzRlODBiNWFlZA%3D%3D

Stokel-Walker, C., & Van Noorden, R. (2023). What ChatGPT and Generative AI Mean for Science. Nature, 614(7947), 214–216. https://doi.org/10.1038/d41586-023-00340-6

Sun, L., Wei, M., Sun, Y., Suh, Y. J., Shen, L., & Yang, S. (2023). Smiling Women Pitching Down: Auditing Representational and Presentational Gender Biases in Image Generative AI. arXiv. https://doi.org/10.1093/jcmc/zmad045

The DigiKam Team. (2001). digiKam (v8.3.0). [Software]. https://www.digikam.org/

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Canton Ferrer, C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Singh Koura, P., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, M., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E.M., Subramanian, R., Tan, X.E., Tang, B., Taylor, R., Williams, A., Kuan, J.X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., & Scialom, T. (2023). Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv. http://arxiv.org/abs/2307.09288

Valenzuela, C., Matamala, A., & Germanidis, A. (2018). RunwayML. https://runwayml.com/

Visual Computing Group. (2018). Image Sorter (v4). [Software]. https://visual-computing.com/project/imagesorter/

Visual Crossing Corporation. (2003). Visual Crossing. https://www.visualcrossing.com/

Vogel, K.M. (2021). Big Data, AI, Platforms, and the Future of the U.S. Intelligence Workforce: A Research Agenda. IEEE Technology and Society Magazine, 40(3), 84–92. https://doi.org/10.1109/MTS.2021.3104384

Wang, F.-Y., Ding, W., Wang, X., Garibaldi, J., Teng, S., Imre, R., & Olaverri-Monreal, C. (2022). The DAO to DeSci: AI for Free, Fair, and Responsibility Sensitive Sciences. IEEE Intelligent Systems, 37(2), 16–22. https://doi.org/10.1109/MIS.2022.3167070

Wojcicki, A. (2020). Artflow AI. https://app.artflow.ai

Yu, C., Tschanz-Egger, J.L., & Souto, M. (2023). Tomato Girl Summer. Designing With: A New Educational Module to Integrate Artificial Intelligence, Machine Learning and Data Visualization in Design Curricula, 19 June. https://master-interaction-design.notion.site/Tomato-Girl-Summer-07dcf86e607e44d5b00b5d8cd9524a75

Zajko, M. (2021). Conservative AI and Social Inequality: Conceptualizing Alternatives to Bias through Social Theory. AI and Society, 36(3), 1047–1056. https://doi.org/10.1007/s00146-021-01153-9

Downloads

Published

2024-10-30

How to Cite

Omena, J. J., Autuori, A., Leite Vasconcelos, E., Subet, M., & Botta, M. (2024). AI Methodology Map. Practical and Theoretical Approach to Engage with GenAI for Digital Methods Research. Sociologica, 18(2), 109–144. https://doi.org/10.6092/issn.1971-8853/19566

Issue

Section

Symposium